还在背九九乘法表?老师没告诉你,用手指就能做20以内的乘法吗?
本文由公众号 “把科学带回家” 提供
给孩子最好的科学教育
你还在纠结九九乘法表吗,小孩子没有学过算术的话背下来的确有些吃力。但是今天要教你用手指做算术,有了这个方法,20以内的乘法也可以在不动笔的情况下轻松搞定。
用手指做乘法的方法大约始于15世纪。你可能会觉得奇怪,学会了老师教的乘法表还有做乘法的方法,为什么还需要这种用手来计算的方法呢?这是因为在欧洲中世纪的时候,印度和阿拉伯世界的数字系统还没有被广泛使用,而且纸和笔在那时候是相对稀缺昂贵的物品。
中世纪用手指做计算的商人
最关键的是,手指计算法并不会随着数字系统和语言改变,不管你是用十进制还是二进制,不管你说什么语言,都能够容易地理解这种计算方法和读取计算结果。对于跨国贸易来说,这种不用说话的沟通方法真是太太太方便了。
这个方法在中世纪很流行,特别是在欧洲的农民和商人间,因此这个方法也被称为欧洲农民乘法(European peasant multiplication)。直到20世纪早期,俄国和法国的农民还在使用这种方法进行两位数的运算。现在某些国际市场上也有人在利用这种方法进行交易。
先来看看最简单的个位数乘以9的算法。小学低年级的小朋友如果掌握不了乘法表,可以用这个方法来帮助记忆。
9乘以个位数的手指算法
这个方法很简单,可以用来计算9乘以1-9的数。
具体的方法是这样的,把两个手摊开,从左到右分别标为1-10。
现在如果你要算9 × 1,那么就把第一根手指弯起来,数一数剩下的手指有多少根。是不是刚好是9根?
如果你要算9 × 2,那么就把第二根手指弯起来。然后分别数一数这根弯起来的手指左右各有多少根手指,是不是分别是1和8?对了,9 × 2 = 18。
如果你要算9 × 3,也是一样,第三根手指弯起来,它的左右刚好分别是2和7,这就是9 × 3的答案27。
你可以这样一直算到9 × 9。
6 × 6到10 × 10的手指算法
现在介绍6 × 6到10 × 10的手指计算法。这个算法的前提是,5 × 5 以内的计算你已经会做了。
1. 首先,让你的两个手掌心朝向你,然后做成嚯哈是谁送你来到我身边的表情。
2. 左手和右手从大拇指到小拇指分别代表6-10。
3. 比如如果算9 × 8,那么就让代表9和8的两根指头接触,下方的手指全部弯起来。
4. 接下来,数一数竖起来的指头(包括碰在一起的手指)的数量,也就是7。
5. 然后数一下左右手分别弯起来的手指数量,然后相乘,也就是1 × 2 = 2。
6. 最后,把第四步的数字乘以10,再加上第五步的数字,就是结果了,也就是:
7 × 10 + 2 = 72
11 × 11到15 × 15的手指算法
其实11 × 11到15 × 15的运算也可以用相同的方式,只不过在最后一步里要加100。
1. 把双手从拇指到小拇指分别看作11-15。
2. 把要乘的两根手指贴在一起,下面的手指全部弯起来。
3. 竖着的手指数是5, 不弯的左右手手指数分别是2和3,2 × 3 = 6,所以答案就是:
5 × 10 + 6 + 100 = 156。
16 × 16到20 × 20的手指算法
如果你要算16 × 16到20 × 20的乘法也可以如法炮制,只不过竖着的指头数量要乘以20,而不是10,最后再加200就好了。
比如我们算16 × 19。
1. 把双手从大拇指到小拇指分别看作16-20。
2. 把要乘的两根手指贴在一起,下面的手指全部弯起来。
3. 竖着的手指数是5,弯起来的左右手手指数分别是4和1,4 × 1 = 4,所以答案就是:
5 × 20 + 4 + 200 = 304。
有了这个方法,你萌考试的时候可以节省宝贵的演算时间,在小卖铺里还可以进行手指云计算惊呆你的小伙伴。
不过瘾,请戳
他花40年折出了能飞68米的吉尼斯世界纪录纸飞机,还被请到哈佛大学演讲
为什么有人分不清蓝色和绿色?不奇怪,古人连蓝色是什么都不知道
瓶装水含有大量塑料微粒,引发世界卫生组织关注,你敢给孩子喝吗?
物理学家辞掉NASA工作玩折纸,一不小心解决了卫星上天的难题
给孩子最好的科学教育
转载请联系 kids@huanqiukexue.com
长按二维码关注我们
图片来源及参考资料:
Eves, Howard. An Introduction to the History of Math- ematics. New York: Holt, Rinehart & Winston, 1969. National Council of Teachers of Mathematics (NCTM).
Historical Topics for the Mathematics Classroom. Reston, Va.: NCTM, 1989.
Newman, James R., ed. The World of Mathematics. New York: Simon & Schuster, 1956.
Pinchback, C. L., and Damber S. Tomer. “A Multiplication Algorithm for Two Integers.” Mathematics Teacher95 (January 2002): 37–39.
Smith, D. E. (1958). History of mathematics (Vol. 1). Courier Corporation.